Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.

Identifieur interne : 001386 ( Main/Exploration ); précédent : 001385; suivant : 001387

Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.

Auteurs : M. Luthman ; S. Eriksson ; A. Holmgren ; L. Thelander

Source :

RBID : pubmed:377293

Descripteurs français

English descriptors

Abstract

Purified calf thymus ribonucleoside-diphosphate reductase (2'-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1), showed an absolute requirement for a dithiol as hydrogen donor, whereas the natural monothiol glutathione (GSH) was inactive per se. However, a protein partially purified from thymus coupled the oxidation of GSH to the formation of deoxyribonucleotides by ribonucleotide reductase. In analogy with the ribonucleotide reductase system of Escherichia coli this protein was called glutaredoxin [Holmgren, A. (1976) Proc. Natl. Acad. Sci. USA 73, 2275-2279]. Thymus glutaredoxin had the following properties: (i) its molecular weight determined by gel chromatography was about 12,000; (ii) it was active iwth ribonucleotide reductase in the presence of GSH, NADPH, and glutathione reductase but had no activity with NADPH and thioredoxin reductase; and (iii) it was immunologically different from thioredoxin because it did not bind to antithioredoxin immunoadsorbents. Experiments on the crossreactivity of thymus and E. coli ribonucleotide reductases and the corresponding thioredoxin and glutaredoxin systems showed essentially no specificity for the homologous thioredoxin but a high species specificity for the homologous glutaredoxin.

DOI: 10.1073/pnas.76.5.2158
PubMed: 377293
PubMed Central: PMC383556


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.</title>
<author>
<name sortKey="Luthman, M" sort="Luthman, M" uniqKey="Luthman M" first="M" last="Luthman">M. Luthman</name>
</author>
<author>
<name sortKey="Eriksson, S" sort="Eriksson, S" uniqKey="Eriksson S" first="S" last="Eriksson">S. Eriksson</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Thelander, L" sort="Thelander, L" uniqKey="Thelander L" first="L" last="Thelander">L. Thelander</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1979">1979</date>
<idno type="RBID">pubmed:377293</idno>
<idno type="pmid">377293</idno>
<idno type="pmc">PMC383556</idno>
<idno type="doi">10.1073/pnas.76.5.2158</idno>
<idno type="wicri:Area/Main/Corpus">001386</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001386</idno>
<idno type="wicri:Area/Main/Curation">001386</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001386</idno>
<idno type="wicri:Area/Main/Exploration">001386</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.</title>
<author>
<name sortKey="Luthman, M" sort="Luthman, M" uniqKey="Luthman M" first="M" last="Luthman">M. Luthman</name>
</author>
<author>
<name sortKey="Eriksson, S" sort="Eriksson, S" uniqKey="Eriksson S" first="S" last="Eriksson">S. Eriksson</name>
</author>
<author>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
</author>
<author>
<name sortKey="Thelander, L" sort="Thelander, L" uniqKey="Thelander L" first="L" last="Thelander">L. Thelander</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1979" type="published">1979</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cattle (MeSH)</term>
<term>Cross Reactions (MeSH)</term>
<term>Escherichia coli (enzymology)</term>
<term>Glutathione (metabolism)</term>
<term>Hydrogen (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proteins (immunology)</term>
<term>Proteins (metabolism)</term>
<term>Ribonucleoside Diphosphate Reductase (immunology)</term>
<term>Ribonucleoside Diphosphate Reductase (metabolism)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Species Specificity (MeSH)</term>
<term>Thioredoxins (immunology)</term>
<term>Thymus Gland (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Bovins (MeSH)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Glutathion (métabolisme)</term>
<term>Hydrogène (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines (immunologie)</term>
<term>Protéines (métabolisme)</term>
<term>Ribonucleoside diphosphate reductase (immunologie)</term>
<term>Ribonucleoside diphosphate reductase (métabolisme)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Réactions croisées (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Thiorédoxines (immunologie)</term>
<term>Thymus (glande) (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Proteins</term>
<term>Ribonucleoside Diphosphate Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Proteins</term>
<term>Ribonucleoside Diphosphate Reductase</term>
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
<term>Thymus (glande)</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
<term>Thymus Gland</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Protéines</term>
<term>Ribonucleoside diphosphate reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Protéines</term>
<term>Ribonucleoside diphosphate reductase</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cattle</term>
<term>Cross Reactions</term>
<term>Hydrogen</term>
<term>Oxidation-Reduction</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Bovins</term>
<term>Hydrogène</term>
<term>Oxydoréduction</term>
<term>Réactions croisées</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Purified calf thymus ribonucleoside-diphosphate reductase (2'-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1), showed an absolute requirement for a dithiol as hydrogen donor, whereas the natural monothiol glutathione (GSH) was inactive per se. However, a protein partially purified from thymus coupled the oxidation of GSH to the formation of deoxyribonucleotides by ribonucleotide reductase. In analogy with the ribonucleotide reductase system of Escherichia coli this protein was called glutaredoxin [Holmgren, A. (1976) Proc. Natl. Acad. Sci. USA 73, 2275-2279]. Thymus glutaredoxin had the following properties: (i) its molecular weight determined by gel chromatography was about 12,000; (ii) it was active iwth ribonucleotide reductase in the presence of GSH, NADPH, and glutathione reductase but had no activity with NADPH and thioredoxin reductase; and (iii) it was immunologically different from thioredoxin because it did not bind to antithioredoxin immunoadsorbents. Experiments on the crossreactivity of thymus and E. coli ribonucleotide reductases and the corresponding thioredoxin and glutaredoxin systems showed essentially no specificity for the homologous thioredoxin but a high species specificity for the homologous glutaredoxin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">377293</PMID>
<DateCompleted>
<Year>1979</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>76</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1979</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.</ArticleTitle>
<Pagination>
<MedlinePgn>2158-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Purified calf thymus ribonucleoside-diphosphate reductase (2'-deoxyribonucleoside-diphosphate:oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1), showed an absolute requirement for a dithiol as hydrogen donor, whereas the natural monothiol glutathione (GSH) was inactive per se. However, a protein partially purified from thymus coupled the oxidation of GSH to the formation of deoxyribonucleotides by ribonucleotide reductase. In analogy with the ribonucleotide reductase system of Escherichia coli this protein was called glutaredoxin [Holmgren, A. (1976) Proc. Natl. Acad. Sci. USA 73, 2275-2279]. Thymus glutaredoxin had the following properties: (i) its molecular weight determined by gel chromatography was about 12,000; (ii) it was active iwth ribonucleotide reductase in the presence of GSH, NADPH, and glutathione reductase but had no activity with NADPH and thioredoxin reductase; and (iii) it was immunologically different from thioredoxin because it did not bind to antithioredoxin immunoadsorbents. Experiments on the crossreactivity of thymus and E. coli ribonucleotide reductases and the corresponding thioredoxin and glutaredoxin systems showed essentially no specificity for the homologous thioredoxin but a high species specificity for the homologous glutaredoxin.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Luthman</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eriksson</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holmgren</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thelander</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.1</RegistryNumber>
<NameOfSubstance UI="D012262">Ribonucleoside Diphosphate Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012262" MajorTopicYN="N">Ribonucleoside Diphosphate Reductase</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013950" MajorTopicYN="N">Thymus Gland</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1979</Year>
<Month>5</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1979</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1979</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">377293</ArticleId>
<ArticleId IdType="pmc">PMC383556</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.76.5.2158</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1978 Aug 25;253(16):5568-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">353055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1977 Feb;129(2):967-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Jul 10;252(13):4600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem. 1977;7(2):165-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">194234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Sep 10;252(17):6132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">197082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1978 Sep 19;17(19):4071-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">101237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jan 25;253(2):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">412850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1979;48:133-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">382982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Mar 25;253(6):1910-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">344311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Mar;73(3):780-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">768986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1967 Sep;2(2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4865314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Aug 10;249(15):4858-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4152559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1973 Feb 25;248(4):1219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4405641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 Nov 25;245(22):6030-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4394943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1970 Oct 25;245(20):5228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4319235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1974 Sep;14(3):509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4604641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Jul 5;315(1):176-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4582821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Jan 10;249(1):205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4809626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1967 Mar 10;242(5):852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5335913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1968 Dec 5;6(4):475-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4883076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Jun;72(6):2305-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1094461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Eriksson, S" sort="Eriksson, S" uniqKey="Eriksson S" first="S" last="Eriksson">S. Eriksson</name>
<name sortKey="Holmgren, A" sort="Holmgren, A" uniqKey="Holmgren A" first="A" last="Holmgren">A. Holmgren</name>
<name sortKey="Luthman, M" sort="Luthman, M" uniqKey="Luthman M" first="M" last="Luthman">M. Luthman</name>
<name sortKey="Thelander, L" sort="Thelander, L" uniqKey="Thelander L" first="L" last="Thelander">L. Thelander</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001386 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001386 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:377293
   |texte=   Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:377293" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020